Measurement of Thin Film Isotropic and Anisotropic Thermal Conductivity Using 3ω and Thermoreflectance Imaging

نویسندگان

  • K. Maize
  • Y. Ezzahri
  • X. Wang
  • A. Shakouri
چکیده

The 3ω method is a well established technique for experimentally extracting thermal conductivity of thin films and substrates. The 3ω method calculates thermal conductivity by measuring thin film temperature response to a metal strip heater deposited on the material’s surface. The electrical resistance of the metal strip is used as both heat source and temperature sensor. An important factor in the accuracy of 3ω measurements is the fact that current should be confined to the thin film metal and any current leakage to the substrate will invalidate the results. This is because the heat source would not be localized on the surface anymore and also because any Schottky behavior at metal/semiconductor interface will create nonlinearities that affect the 3ω signal substantially. These problems are especially important at high temperatures where thermionic emission of electrons through oxide insulation layer becomes important. In this paper we propose thermoreflectance imaging as an additional method to determine thermal conductivity of thin film materials. Because thermoreflectance measures temperatures optically, the method is not as sensitive to the electrical properties of the metal heater. In addition, the temperature profile near the heat source can be used to make sure that there is no defect in the thin film metal heater. Theory is presented demonstrating thermoreflectance can also be used to measure anisotropic in-plane and crossplane thermal conductivity in thin films. Preliminary thermoreflectance measurements were analyzed at various locations on the surface of isotropic, InGaAs thin film 3ω test samples. Experimental results are in agreement with simulated temperature distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nano...

متن کامل

Optical Measurement of Thermal Conductivity Using Fiber Aligned Frequency Domain Thermoreflectance

Fiber aligned frequency domain thermoreflectance (FAFDTR) is a simple noncontact optical technique for accurately measuring the thermal conductivity of thin films and bulk samples for a wide range of materials, including electrically conducting samples. FAFDTR is a single-sided measurement that requires minimal sample preparation and no microfabrication. Like existing thermoreflectance techniqu...

متن کامل

Thermal phonon boundary scattering in anisotropic thin films

Boundary scattering of thermal phonons in thin solid films is typically analyzed using FuchsSondheimer theory, which provides a simple equation to calculate the reduction of thermal conductivity as a function of the film thickness. However, this widely-used equation is not applicable to highly anisotropic solids like graphite because it assumes the phonon dispersion is isotropic. Here, we deriv...

متن کامل

Characterization of thin metal films via frequency-domain thermoreflectance

Frequency-domain thermoreflectance is extended to the characterization of thin metals films on low thermal diffusivity substrates. We show how a single noncontact measurement can yield both the thickness and thermal conductivity of a thin metal film with high accuracy. Results are presented from measurements of gold and aluminum films 20–100 nm thick on fused silica substrate. The thickness mea...

متن کامل

Thermal Conductivity of a Nanoscale Yttrium Iron Garnet Thin-Film Prepared by the Sol-Gel Process

The thermal conductivity of a nanoscale yttrium iron garnet (Y₃Fe₅O12, YIG) thin-film prepared by a sol-gel method was evaluated using the ultrafast pump-probe technique in the present study. The thermoreflectance change on the surface of a 250 nm thick YIG film, induced by the irradiation of femtosecond laser pulses, was measured, and curve fitting of a numerical solution for the transient hea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008